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Controlling Hamiltonian chaos via Gaussian curvature
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We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of
freedom. The purpose of the method is to avoid the regioNq 9f,q,) where its Gaussian curvature becomes
negative. We show the stabilization of the rida-Heiles system, over a wide area, for the critical energy
E= 1. Total energy of the system varies only by a few percE®1063-651%99)50512-§

PACS numbdps): 05.45-a

To control chaos in nonlinear dynamical systems, Otttem and the second for the sinusoidal Hamiltonian. Our aim
Grebogi, and Yorkg OGY) [1] proposed to apply a small is not only to avoid the negative curvature regions of
perturbation to stabilize an unstable periodic orbit. ThisV(d;,0), but more generally, to separate positive curvature
method was developed for dissipative systems and has be#@gions from negative curvature regions. By this approach,
succesfully applied in a variety of cases. Lai, Ding, and Grewe expect to stabilize the systefire., to obtain regular or-
bogi (LDG) [2] extended the OGY method to Hamiltonian bits) when the chaos is general and fills the quasitotality of
chaos. But in the Hamiltonian systems, the control of chaoghe phase space. This method should operate in a large part
is more difficult because there are no attractors and thef the phase space with an average energy variation of 10%
search for chaotic behavior stretches to large areas of ther less.
phase space. In the scientific and engineering disciplines, The Gaussian curvature &f(q;,q,), must not be con-
dissipative systems are more commonly used than Hamilfused with the curvature of trajectories of the phase space
tonian systems. The latter occur in the physics of chargetranslated as geodesics on a Jaddii Eisenhart[6,7] or
particules(such as plasma fusion, laser-plasma interactionfFinsler [8] manifold. There is no connection between the
free electron laser, or particle acceleratpig astronomy curvature ofV(q,,q,), and the curvature of geodesics in the
(planetary motioh and in atomic physicémotion of atoms phase space. For example, in the case of theoHdHeiles
in molecules and crystals to describe molecular vibrations oHamiltonian, the Gaussian curvature 4{q,,q,), can be
molecular reactions, or motion of electrons in molecules positive or negative, while the curvature of the Jacobi mani-
[3,4]. To avoid the appearance of chaotic behavior in a confold is always positivd 7] even when the system is chaotic.
servative system, the classical method consists of establisihe sign of curvature on a Jacobi manifold is related to the
ing a map of chaotic and regular regions in phase space argign of Laplacian o/ (q;,0,), and not to the sign of Gauss-
then choosing initial conditions in a regular area. Howeverjan curvature o (q;,q,). The chaotic behavior of Hamil-
this method presents a major disadvantage: for a certain notenian flows(viewed as geodesic flows in a manifpldan
linear parameter value of the Hamiltonian, chaos becomeresult from negative curvature on the Jacobi manif@Hor
general and the regular areas disappear. The LDG methddom parametric resonance of geodesics due to curvature
can be used in the chaotic region but only along one unstabiuctuation[6]. The Finsler geometric indicator of chaos can
periodic orbit, after an extremely long chaotic transigtit ~ discriminate between chaotic and regular orbits, i.e., between
In another approach, Wt al. [5] proposed to control chaotic and regular regions of the phase space. For the
Hamiltonian chaos of a periodically driven system with oneHenon-Heiles Hamiltonian, one-to-one correspondence has
degree of freedom, by an external field, but large intensitieeen demonstrated between Finsler geometry and ¢haps
were requiredfrom 40 to 60 % of the original driving forge ~ This method gives results already obtained with the usual

Our goal is to present a stabilization method for sometools (distribution of chaotic and regular regions in the phase
chaotic Hamiltonians which have two degrees of freedomspace and is not useful as a stabilization tool.

With this aim, we consider the Gaussian curvature of the We study the Heon-Heiles Hamiltonian because it is the
potential energy surface/(q;,q,), of the system as one paradigmatic model in the study of the Hamiltonian chaos.
source of chaos. In this article, we study the behavior of théMloreover, one finds it in various applicatiofiastronomy,
Hamiltonian system following a change of the Hamiltonianaccelerator physics, atomic physics, gfel]. The Heon-

to avoid the regions o¥(q,,q,) where its Gaussian curva- Heiles model is a Hamiltonian with two degrees of freedom
ture becomes negative. We call this avoidance of negativand quadratic positive kinetic enerd{l]. The system is
curvature regions of the potential ener¢yNCRP). Two  conservative. Therefore,

ways to do this ardi) to omit, from the Hamiltonian, the

terms causing the negativity of the Gaussian curvature on H(q91,92,p1,P2)=E, (1)
regions ofV(q4,q,) where the curvature becomes negative,

and (ii) to change the periodicity of periodic Hamiltonian so with

that it is restricted to regions of(q;,q,) with a positive

curvature. The first method is used for therida-Heiles sys- E=T(p1,p2) +V(d1.95), 2
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where
0.4
1 2 2
T(p1,p2)= 5 (Pt P3) ©)
0.2
and
1 1 P2 o
V(Q1,02) = 5 (Q1+d3) + 4102~ 35. @

The nonlinear parametét is the total energy of the system
which drives chaos. WheE= 7, there are only a few cha-
otic orbits, forE=3% approximately half of the Poincasec-

tion is filled with chaotic regions, and finally fdE=¢ the 04 =
chaos is general and has invaded the quasitotality of phase 0.4 -0.2 0 0.2 0.4 0.6
space.

The Gaussian curvaturié [12] of the potential of this q2 (Cl)

Hamiltonian whose kinetic energy has a quadratic form, can

be written as 0-¢
0.4 L
1- 49740} SR
P [ (At 20100) 2+ (05 + 02— g9) %) AL
p2 0

which is positive inside a circle of equati@f+ 3= %.
The Gaussian curvatut¢ depends only on the space co- 0.7

ordinates. In addition, negative curvature regions form com-

pact blocks. The application of the stabilization method is

therefore facilitated. 0.4

The Poincaresection shows chaotic areas for total energy
E=3, wi'gh Iarg(.a' regular islet§Fig. 1(a)]. In this situatior),” 0T 5 02 01 008 1
the classic stabilization method would be to choose the initial
conditions in an islet or to “push” the orbit to an islet by an q2 (b)
external energy contribution.

As the value of energy increases, the islets gradually dis- —
appear. Thus, foE= % with the same initial conditions as - .
those.in Fig. 4a), stable islets disappear and make way for a 0.4 4_‘_:._;_7_,.. N
chaotic sedFig. 1(b)]. ’ e~ Lo ;

The ANCRP technique becomes a cutoff to the frontier o Iy
between negative curvature areas and positive curvature 0.2 //,.-;:ff’" \\"x
ones, 7 "“‘%;f.\.\

p2 0 g““\ @ ,-’a/’l\})
1 2 2.1 5 o o 13 \.{.‘\-:\__\.. e
H(d1,02,P1,P2) = E(p1+ p3)+ §(q1+ gz) +91dz— §Q2 -0.2 et .

if 92+g2<1, and ST

Gimaz=sa 0.4 0.2 0 0.2 0.4

. . q2 (c)
R S N S
H(Q1,02,P1,P2) = 2 (p1+p2)+ 2(q1+q2) (7 FIG. 1. Poincaresection of Haon-Heiles Hamiltonian fofa)

E=% (regula), () E=% (complete chads and (c) E=%, with
cutoff stabilization method. Initial conditions;;=0 andg,=0.
if qf+0a5>7.

This cutoff condition is very simple. It introduces a dis- for the same initial conditions regular orbits, which is evi-
continuity and then a shock on the cira:1§+ q%z 7. Figure  dence of a quasidisappearance of chaos and a stabilization of
1(c) shows the Poincarsection forE=% with the cutoff phase space.
condition applied. Unlike Fig. (b), Fig. 1(c) demonstrates The condition of negative curvature region cutoff has not
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FIG. 2. Poincaresection of sinusoidal Hamiltonian foi) s
=0.5(regulay, (b) s=1.5(complete chagsand(c) s=1.5 with the

condition? Theoretically, by retreating the limit of the cutoff,

a certain number of orbits have to become chaotic because
they are submitted again to negative curvature regions. On
the contrary, by decreasing the radius of the circle, condi-
tions of shock are less violent because near the center the
Henon-Heiles potential is close to a quadratic potential. The
regular regions must increase in size at the expense of the
noise regions. By advancing or by retreating the limit of the
cutoff, we observe, as planned, in one case the increase in the
size of the three stable regions, and in another case the reap-
pearance of chaos on the stable region edge.

As previously stated, the cutoff condition introduces a
shock on the circlg?+q5=2%. As has been shown by Sinai
[13] in the case of the circular pool, repeated shocks on a
circular edge are a source of chaos. So theoretically, the cut-
off condition would have to introduce more chaos in the
system. In fact it is the other way around and Poincae-
tion for the cutoff conditionFig. 1(c)] shows the stabiliza-
tion of the system with some appearance of noise. The cut-
off condition has little effect on the total energy of the
system, i.e., the average energy variation of the system is on
the order of a few percent, depending on each orbit. The
efficiency of this method, is not the result of an artificial
diminution of the total energy.

We applied the ANCRP technique to other Hamiltonians,
significant for their applications,

1, (s)\?
H=>5pi-| ;]| [cosa;+cogq,—1)] ®
and the quartic oscillator Hamiltonian
1 1 a
H=2(pi+p)+ 5(ai+a3)+ 5 aias. E)

The first Hamiltonian is time dependent but can be reduced
to a 1.5 degree of freedom Hamiltonian sysfg]. Specifi-
cally, let

2
V:-(Z) [cosq;+cogd;—0az)], (10

stabilization method. Initial conditions are identical in the three

cases.

wheret becomes the second coordinate axis of the potential.

rendered the Hamiltonian integrable. The attenuation or th&his potential is a periodic function with a periodrZor g,
disappearance of chaos results from a stabilization of orbitand 2 for ;. When the nonlinear parametet: 0.68, large

in the phase space.

scale chaos appears in phase space. The Gaussian curvature

What will happen if one moves the limit of the cutoff of this potential
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256a* cosq; cogq;— )
K:
[256+ a* sinfq, +2a* sing, sin(g,—g,) +2a* sirf(q,—q,) 12

(11)

is periodic forq,; andq, with a period 2. case to divide the surface of the potential between positive
To avoid negative Gaussian curvature of this potentialand negative regions, because it generates 16 shocks for a

which fills 50% of the potential surface, we impose a peri-large number of trajectories at each period. Morever, the

odicity of 7 to the dynamics. To put this into practice, we conditiona=0 for the negative curvature regiofise., the

choose one positive curvature region of the potefitrlud-  use of a cutoff-like ANCRP technique, as with therde-

ing the point(0,0)], then we impose on the edges the follow- Heiles Hamiltoniah involves a very important variation of

ing closing conditions: the energy of the system. Sitill, the quartic oscillator shows a
strong correlation between chaos and Gaussian curvature of
the potential{i) the last stable trajectories are the ones which

an
(i) If Q1>§, Q=01 — 7, (=0~ m, avoid the negative curvature regions, afid large scale
- chaos appears in the system &or 6 [15] and we calculate
(i) If gy<-— o Q=0+ 7 Qe=Qpt m, [from Eq.(12)] the emergence of the negative curvature re-
- gions precisely foa>6. The same correlation can be found,
(i) If g,>qq+ 50 Q== , for example, for another Hamiltonian of the quartic oscillator
family,

] T
(iv) If <01~ 5, G2=02t 7.

1
These few conditions define a region of the potential with H= E(p?r p3)+30;+05—aqgias. (13
a positive Gaussian curvature. It is then possible to study the
effect of the ANCRP technique. Far=1.5, phase-space is
widely chaotic[Fig. 2(b)]. For the same initial conditions,
the Hamiltonian with ANCRP technique, is stablég. 2(c)].
We find again, as in the case of the id@-Heiles Hamil-

In this case, chaos and negative curvature of the potential
appear both foa>0.

We can conclude that for the three different two-
tonian, another success for the ANCRP technique. dimensional Hamiltonian SVS‘?”‘S’ avoidanc_e_ of n_egative
The third Hamiltonian defined by E¢@), is almost com- curvature of the pot_entlal provides more st_ablhty_. It is well

' known since Benettiet al.[16] that some trajectories cross-

pletely chaotic fom=12. Gaussian curvature of the potential . . . : :
ing negative curvature regions of the potential remain stable.

energy 1s We show here that Gaussian curvature of the potential is

360202 — 3220202+ 6a(q*+g* strong_ly involved in the emergence of chaos, even if chaotic

- 6q122 a gqu as(ql q22) . (12  behavior and negative curvature of the potential are not
[1+(295+ag05)°+ (203 +a0.q5)%] equivalent.

The negative regions broadly fill the potential surface with The authors thank Jan Walleczek, Todd Pawlicki, and Jef-
the shape of a four-leaved clover. It is not possible in thisfrey Carson from Stanford University for useful suggestions.
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